Blog

TIG Welding Equipment

TIG Welding Aluminum

14 June, 22 1:57 am · Leave a comment · Red-D-Arc
Share
Facebooktwitterlinkedinmail

TIG Welding Aluminum

Tungsten Inert Gas (TIG) welding—more formally known as Gas Tungsten Arc Welding (GTAW)—is well-suited for welding aluminum. Although the process is significantly slower than GMAW (MIG), TIG welding offers unmatched control of weld penetration and profile. This level of control is enhanced by the features available on modern TIG welders.

Preparing to Weld

Even with modern equipment, welding aluminum is very much like painting: preparation is key. The cause of a lot of headaches when TIG welding aluminum is related to aluminum oxide. This protective oxide layer has benefits for parts in service but must be removed from around the weld joint by using a stainless-steel wire brush—one dedicated to aluminum only—prior to welding. If not removed, the oxide layer may limit weld fusion and overall control in the welding process. 

The aluminum oxide layer is also well-suited to trapping and retaining moisture that becomes a source of weld metal porosity. For this reason, preventing condensation formation on both the base metal and filler metal is also critical to achieving good quality. At the very least, allow filler metal and base metal to thermally acclimate to the welding environment before use. Consult with filler metal manufacturers to learn more tips about how to combat porosity when welding aluminum.

“The aluminum oxide layer is also well-suited to trapping and retaining moisture that becomes a source of weld metal porosity.”

Pure tungsten electrodes were once the industry standard for TIG welding aluminum since these electrodes formed a nice “balled” tip that performed well when using alternating current on older transformer-based equipment. However, ceriated tungsten electrodes have become the norm with newer inverter-based power sources. Preparing ceriated tungsten for welding aluminum involves simply grinding the end of tungsten to a point at a 60-degree angle, give or take depending on the desired arc cone.

(more…)

Aluminum Welding: Challenges and Considerations

27 April, 22 10:24 am · Leave a comment · Red-D-Arc
Share
Facebooktwitterlinkedinmail

industrial aluminum welding

Aluminum welding is one of the most critical processes in manufacturing. By understanding the challenges of aluminum welding, manufacturers can produce stronger and more reliable products. Aluminum is a unique material that requires special techniques to weld properly. It is valued for it’s lightness and is often used in aircraft construction.  This guide will discuss the different steps involved in the aluminum welding process and why you must follow a specific protocol when welding with this material.
(more…)

Welding Rental for Beginners: Which Type of Welder Should I Rent?

27 April, 22 10:04 am · Leave a comment · Red-D-Arc
Share
Facebooktwitterlinkedinmail

With welding, as in many things, having the right tools is crucial. As a beginning welder, the appropriate equipment varies depending on the type of welding work you plan to accomplish. There isn’t a one-size-fits-all option; the proper welder for working in a steel mill or auto shop is often out of place on a construction site or in your personal workshop at home. A welder rental provides the opportunity to find the best fit for your needs.

To put your best foot forward, take the time to learn about the different types of welding and the equipment involved. As a newcomer to the field, you can discover the important facts in the following welder rental FAQ resource.
(more…)

MIG vs TIG Welding: Which Method Is Right for Your Application?

25 April, 22 3:28 pm · Leave a comment · Red-D-Arc
Share
Facebooktwitterlinkedinmail

Many businesses perform welding tasks every day, including parts manufacturers, vehicle makers, construction businesses and repair shops. People who enjoy do-it-yourself projects can handle automotive tasks or home repairs with a good arc welder. Thanks to welder rental options, you don’t even need to purchase welding equipment to get the job done.

Two popular types of arc welding equipment are metal inert gas (MIG) welding and tungsten inert gas (TIG) welding. What are the differences? How can you decide whether MIG or TIG welding is the right method for your application.

MIG Welding Process

MIG welding utilizes a welding gun with a machine-fed consumable wire. This metal wire serves as the electrode and provides the filler material for the weld at the same time.

While you work, the MIG welder delivers inert gas (usually argon) to shield the weld pool and protect the metal from contamination. The MIG welding gun automatically feeds more wire into the molten pool as you advance, so this option provides “what-you-see-is-what-you-get” welds that are easy to start, direct and control.
(more…)

TIG Welding with Red-D-Arc’s GX330XL Portable Gas Welder

06 January, 22 3:56 pm · Leave a comment · Colin Brown
Share
Facebooktwitterlinkedinmail

Red-D-Arc GX330XLIn addition to portable stick, MIG, flux-cored and spool gun welding, the GX300XL also allows you to perform in-field Touch Start TIG welding with Pulse capability.

DC TIG Welding with Optional High-Frequency
For DC TIG welding without high frequency, the GX330XL is available with an air-cooled TIG torch, gas regulator, and a K780 Foot Pedal, and a K930-2 TIG Module can be included which enables high-frequency arc starting.

For AC TIG Welding, add a Square Wave TIG 200
For AC TIG welding with high frequency, you can power a Lincoln K5126-1 Square Wave TIG 200 (which includes a PTA-17 TIG torch and a K5126-1 Foot Pedal) from the 120/240 VAC dual voltage, full-power receptacle on the front control panel of the GX330XL.
(more…)

How a TIG Welder Can Extend The Life of Aircraft Parts

19 July, 21 10:21 am · Leave a comment · reddarc
Share
Facebooktwitterlinkedinmail

aircraft maintenance inspection on small plane

Aircraft repair is a huge business! In 2018, the worldwide economic impact for global aircraft maintenance, repair, and overhaul (MRO) was over $75 billion (USD), with an estimated compounded annual growth rate of 4.7% through 2025. The commercial air travel industry’s near-term growth outlook is 6.5%, with 20-year traffic growth projected at 4.0%. Welding is a standard maintenance practice in aircraft repair as described in the FAA Advisory Circular 43.13-1B. As welding processes and procedures have improved over the years, some parts that were once non-repairable can now be repaired by welding.

TIG Welder Methods and Materials

Welding is the most prominent form of joining metals in aircraft without the use of fasteners. The five types of metals welded in aircraft are 4130 steel, stainless steel, aluminum, magnesium, and titanium, each used in different areas of the aircraft. For example, 4130 was a prevalent building material in tube-and-fabric construction but is now limited to mainly aircraft used in agricultural applications.

Magnesium Alloy

TIG Welding is revolutionizing aircraft maintenance for repairs that fall outside of the original equipment manufacturer’s scope. Magnesium alloy is common in constructing transmission cases in helicopters because it is very strong and light; weight is everything in aircraft (particularly helicopters). Yet transmission cases were never made to be a repairable item. The original intention was to simply scrap damaged cases and replace them. However, a new transmission case can easily cost more than $50,000. Companies specializing in aero repairs have pioneered proprietary repairs on transmission cases and gearboxes that pass the FAA’s rigorous muster. These repairs can save upward of 90% off the bill of a new case or gearbox.

The approved method for magnesium cases is predominantly tungsten inert welding (TIG) for the extreme heat necessary to join the metal. Oxyacetylene can be used for this method of joining metals but it is not the best method due to base metal oxidation, distortion, and the loss of elasticity.

small aircraft maintenance on propellor

Benefits of TIG Welding in Aircraft Repair

Tungsten inert welding (TIG, also known as Gas Tungsten Arc Welding) is an incredibly versatile welding method and can meet most of the demands of aircraft maintenance. Because of its relative simplicity and accessibility, oxyacetylene welding was the standard process for many, many years. Still, TIG welding has dethroned it as the go-to method in recent years, particularly as TIG equipment has become commonplace and come down in price.

Changing Technologies in TIG Welding

In the early years of TIG welding, the inert gas most commonly used was helium, which gave rise to the early trade names of Heliarc and Heliweld. In time, carbon electrodes made way for the modern tungsten rod. We now find a highly versatile technique that is further enhanced by the ability to run either alternating current or direct current.

A TIG welder set for DC current, straight polarity, is suitable for all mild steels, stainless steel, and titanium typically welded during aircraft maintenance. 4130 is a low-carbon, chromium-molybdenum alloy and is very common in the composition of aircraft structures. The signature standard alloy is used in a tubular form for aircraft fuselages that employ a truss-type of construction. In commercial aviation, agricultural application aircraft (“crop dusters”) use this construction method exclusively because it provides a strong, rigid airframe.

Low Carbon Steel

Low-carbon steel is also widely used in the industry in the production of engine mounts for piston engines. For these parts, welding is the only method of repair available to help operators avoid purchasing new replacement parts. Considering a used engine mount from an aircraft salvage yard runs in the ballpark of $1,000 for a simple Cessna 172, fixing a cracked weld whenever practical is a much more cost-efficient solution.

jet engine turbine blades

Engine Repairs

Historically, aviation has been a hobby for the wealthy, and this is not just talk. If you have ever wondered why airplane owners speak openly about rebuilding their engines rather than replacing them with new engines, the figures will make it clear. Consider that a brand-new four-cylinder piston engine easily runs in the $40,000–$50,000 range. That’s not a misprint. A rebuilt zero-time engine for a Cessna 172 is still more than $20,000, and these are engines without turbochargers or superchargers.

Engine cases on aircraft piston engines are also often made out of magnesium alloys, for the same reason that gearboxes and transmission cases are: excellent strength-to-weight ratio. Unlike an automobile engine, which routinely only runs around 10%–15% of maximum output, aircraft engines operate at about 75% output during the cruise. Accordingly, their crankcases are subject to high stress and are prone to cracking. Also, since the engines are often repeatedly overhauled, the cases may have several thousand hours of use as opposed to the pistons and cylinder jugs, which are replaced at overhaul intervals. A new engine crankcase is predictably quite expensive, so the option to repair a crack by welding is far less costly.

The more complex the aircraft, the higher the cost of replacement parts. Turboprop turbine engine rebuilds (Pratt & Whitney PT-6A, Honeywell TPE331, etc.) often exceed hundreds of thousands of dollars. Fixing cracks and building up casting defects and damage is a cornerstone of cost-effective repair strategies.

Other Weldable Materials Commonly Used in Aircrafts

Aircraft are exciting machines. They are flown through turbulent air at hundreds of knots, blasted with rain and wind, only to just about drop out of the sky and slam onto a hard runway. They are strong, yet they have to be light. Corrosion is a silent killer, and weight is the constant nemesis. Stainless steel and titanium are used in aircraft construction in critical areas where low weight and temperature tolerance are paramount.

pitt special perrformance stunt plane

 

Titanium

Titanium is widely used in turbine engine compressors and stator blades, subject to constant high vibration, extreme heat, and foreign object debris (FOD) that routinely includes pebbles and rocks, rivet stems, screws, loose hardware, ice, and birds. It is a harsh environment where titanium components are easily damaged. TIG welding these damaged components to fill in and blend the damaged areas saves thousands of dollars and considerable time in commission spent waiting on parts. Instead, repairs can be performed often on-site, and the engine reinstalled quickly.

Stainless Steel

Stainless steel is ubiquitous on aircraft, often used in ducting and baffling throughout the aircraft, exhaust ducts or pipes, and a slew of other areas. When, for example, an exhaust duct on a turboprop crack (not uncommon), it can easily be removed and repaired, again saving a lot of money and a whole lot of time.

Conclusion

Aviation is one of the most heavily regulated industries in the world. The threshold of entry to new designs is so burdensome that old technology prevails. Also, old aircraft are commonplace. Many airliners, particularly cargo aircraft, are 20 to 30 years old, which takes a toll on metals prone to fatigue. Rather than replacing parts, it is fiscally advantageous to repair whenever possible, and most repairs boil down to a weld to fix the metal. Welded repairs continue to keep operators in the black and safety compliant in a transportation market where controlling costs and maintaining safety standards are essential considerations.

 

Apex 2100 Orbital TIG Welding System Demonstration

28 July, 16 10:46 am · Leave a comment · Geoff Campbell
Share
Facebooktwitterlinkedinmail

Companies involved in the pipe welding industry are always looking for new ways to increase productivity and win more contracts. At Red-D-Arc, our goal is to provide the best possible solutions to address their needs. Staff at our Red-D-Arc Las Vegas branch recently did a demonstration of the Apex 2100 Orbital TIG Welding System. The demonstration was performed on a 6.5 inch piece of carbon steel pipe. The Apex 2100 captures data about the weld in real time and allows the user to monitor, adjust and control the welding parameters throughout the process. A compact, lightweight pendant allows for convenient one handed operation and the simple interface is intuitive and easy for operators to learn. The system is also easy to service and maintain, allowing for maximum up time and onsite maintenance.

Our experts can provide a demonstration of this and many other types of weld automation equipment. Contact us today about the advantages that orbital welding and other welding automation systems can bring to your business.

 

Read more on orbital welding

AirGas Logo

Airgas, an Air Liquide company, is the nation's leading single-source supplier of gases, welding and safety products. Known locally nationwide, our distribution network serves more than one million customers of all sizes with a broad offering of top-quality products and unmatched expertise.